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Abstract

Purpose – Performance of various k-1 models on turbulent forced convection in a channel with
periodic ribs is assessed.

Design/methodology/approach – The influence of the Yap correction and the non-linear
stress-strain relation on the predictions of mean-flow, turbulence quantities and local heat transfer rate
is examined. The effect of thermal boundary conditions on the heat transfer predictions is investigated by
employing both the prescribed heat flux approach and the conjugate heat transfer approach.

Findings – It was found that the inclusion of the Yap correction in the 1-equation significantly
improves the predictions of mean velocity and wall heat transfer for both high-Reynolds number and
low-Reynolds number k-1 models in the present ribbed channel flow with massive flow separation. The
employment of the non-linear stress-strain relation only marginally improves the predictions of
turbulence quantities: the turbulence anisotropy is reproduced although the level of turbulence intensity
is still too low. In general, the conjugate heat transfer approach predicts better average Nusselt number
than the prescribed heat flux approach. However, both approaches under-predict the experimental value
by about 28-33 percent when the low-Reynolds number k-1 model of with the Yap term is adopted.

Originality/value – Thorough numerical treatments of the thermal boundary conditions at the
solid-liquid interface, and detailed periodic condition in the periodic regime, were given in the paper to
benefit researchers interested in solving similar problems.

Keywords Convection, Heat transfer, Channel flow

Paper type Research paper

The Emerald Research Register for this journal is available at The current issue and full text archive of this journal is available at

www.emeraldinsight.com/researchregister www.emeraldinsight.com/0961-5539.htm

Nomenclature
C1;C2;C3 ¼ coefficients of the non-linear

stress-strain relation
C11;C12 ¼ coefficients in the 1-equation
Cm ¼ coefficient in the eddy viscosity

formula
Cp ¼ specific heat
D ¼ channel height
Dh ¼ hydraulic diameter
f 1; f 2 ¼ coefficients in the 1-equation for

low-Reynolds number (LRN)
models

f m ¼ damping function in the eddy
viscosity formula for LRN
models

H ¼ rib height
k ¼ turbulent kinetic energy
_m ¼ mass flux
n ¼ surface normal
Nu ¼ local Nusselt number
Nu ¼ average Nusselt number
P ¼ pressure
~P ¼ periodic part of pressure
Pi ¼ rib pitch
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1. Introduction
Forced convection in a channel with rib-roughened walls is seen in a variety of
applications, including cooling of electronics, turbine blades and heat exchangers. Ribs
are used to enhance heat transfer by increasing the heat transfer surface area and by
interrupting the wall boundary layer to promote mixing and turbulence (Young and
Vafai, 1999; Wang and Vafai, 1999). Fully developed channel flows have been
extensively studied, and the experiments of Drain and Martin (1985); and Liou et al.
(1993) have been frequently used for turbulence model validation. Drain and Martin
performed laser-Doppler velocimetry measurements of the velocity field of water flow
in a channel with one wall roughened by periodic ribs. Liou et al. conducted the
corresponding heat transfer measurements for the same geometry in an airflow using
the holographic interferometry technique. The most recent numerical studies on these
two cases include Bredberg and Davidson (1999), Manceau et al. (2000) and Tsai et al.
(2000).

Various thermal boundary conditions have been adopted to investigate the heat
transfer along the ribbed wall in order to compare with Liou et al.’s measurements, in
which the wall was constructed of aluminum and heated by a thermal film attached to
its underside. Bredberg and Davidson and Manceau et al. imposed one-third of the heat
flux on each of the rib faces to avoid solving the conjugate conduction-convection
problem. In essence, they assumed that the heat flux entering the rib base from the
channel wall was equally distributed through the rest of the rib faces. In addition to the
above prescribed heat flux approach, Manceau et al. also adopted the conjugate heat
transfer approach to solve conduction and convection equations simultaneously.
However, no details were given about how the conjugate problem was solved.

Pk ¼ turbulence production term in
the k-equation

P 0
k ¼ modification of Pk

Pr ¼ Prandtl number
Prt ¼ turbulent Prandtl number
qw ¼ wall heat flux
Re ¼ Reynolds number
Ret ¼ turbulent Reynolds number
S ¼ strain-rate invariant
Sij ¼ strain-rate tensor
T ¼ temperature
~T ¼ periodic part of temperature
Tb ¼ bulk temperature
uj ¼ velocitycomponents in thexj direction
u

0

rms ¼ turbulence intensity in the x direction
(urms

0 ¼
ffiffiffiffiffiffiffiffi
u0u0

p
)

ut ¼ friction velocity
ui 0uj 0 ¼ Reynolds stress

uj 0T 0 ¼ turbulent heat flux

Ub ¼ bulk velocity

xj ¼ Cartesian coordinates

yþ ¼ yþ ¼ yut=n

y* ¼ y* ¼ y
ffiffiffi
k

p
=n

Greek symbols
a ¼ thermal diffusivity
b ¼ pressure gradient
dij ¼ Kronecker’s delta
1 ¼ dissipation rate of k
g ¼ temperature gradient
k ¼ von Karman constant
l ¼ thermal conductivity
l0 ¼ thermal conductivity ratio of solid

to fluid
n ¼ kinematic viscosity
nt ¼ eddy viscosity
V ¼ vorticity invariant
Vij ¼ vorticity tensor
f ¼ variable
r ¼ density
s1 ¼ model constant for the

1-equation
sk ¼ model constant for the

k-equation
tw ¼ wall shear stress
c ¼ variable representing P or T in

Section 3.2
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The near-wall treatments of turbulence models are key factors to yield accurate wall
heat transfer predictions. In the high-Reynolds number (HRN) k-1 models, wall
functions are commonly employed to bridge the turbulent and near-wall viscous
regions. However, for non-equilibrium separated flows, the validity of the wall-function
approach, particularly when heat transfer prediction is the primary interest, is
questionable. In the low-Reynolds number (LRN) k-1 models, damping functions are
used to mimic the physical damping on turbulence by walls. One well-known problem
of most LRN models is that they tend to predict excessive near-wall turbulence length
scale, and Yap (1987) proposed a correction to this problem by introducing an extra
source term into the 1-equation to drive near-wall length scale towards its local
equilibrium value.

In the conventional eddy-viscosity turbulence models, the linear stress-strain
relation based on the Boussinesq approximation is commonly used, which can result in
isotropic Reynolds normal stresses even in simple shear flows. To overcome this
deficiency, each Reynolds normal stress can be solved from its own transport equation
containing convection, diffusion, production, dissipation and pressure-strain processes,
the last being responsible for the redistribution of turbulence energy among its three
normal stress components. Unfortunately, this modeling approach, referred to as
second-moment closure model, suffers from poor numerical stability and high
computational cost. A potential alternative to second-moment closure, while retaining
the advantageous elements of the linear eddy-viscosity framework, is to express the
Reynolds stresses in terms of a non-linear expansion in powers of strain-rate and
vorticity tensors explicitly (Pope, 1975) – hence the term “non-linear eddy-viscosity
model”. Examples include the model of Shih et al. (1993) and Speziale (1987).

In the present study, the standard HRN k-1 model with wall functions and the LRN
k-1 model of Lien and Leschziner (1999), both combined with the Yap correction term,
are validated against the measurements of Drain and Martin (1985) and Liou et al.
(1993). The effect of thermal boundary conditions on the heat transfer predictions is
investigated by employing both the prescribed heat flux approach and the conjugate
heat transfer approach. In the latter, the influence of the thermal conductivity ratio of
solid to fluid is also considered. To examine the effect of turbulence anisotropy on the
mean-flow and heat transfer predictions, the “realizable” non-linear k-1 model of Shih
et al. (1993) is adopted.

2. Mathematical formulation
2.1 Governing equations
The Reynolds (time-averaged) continuity, momentum, and energy equations for steady
incompressible flows can be written, in Cartesian tensor notation, as

›

›xj
ðujÞ ¼ 0 ð1Þ

›

›xj
ðujuiÞ ¼ 2

1

r

›P

›xi
þ

›

›xj
n

›ui
›xj

þ
›uj
›xi

� �
2 ui 0uj0

� �
ð2Þ

›

›xj
ðujTÞ ¼

›

›xj
a
›T

›xj
2 uj0T 0

� �
ð3Þ
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where uj is the time-averaged velocity in the xj-direction, with j ¼ 1 or 2 representing
the streamwise x or vertical y direction; viz. ðx1; x2Þ ; ðx; yÞ and ðu1; u2Þ ; ðu; vÞ:

2.2 Turbulence models
In the two-equation k-1 models, the Reynolds stresses (ui 0uj0) and turbulent heat fluxes
(uj0T 0) are modeled in terms of the eddy viscosity (nt), turbulent kinetic energy (k) and
its dissipation rate (1). Based on series-expansion arguments by Pope (1975), the
stress-strain relationship can be written as

ui 0uj0

k
¼

2

3
dij2

nt

k
Sij|ffl{zffl}

linear term

þC1
nt

1
SikSkj2

1

3
dijSklSkl

� �
þC2

nt

1
ðVikSkjþVjkSkiÞþC3

nt

1
VikVjk2

1

3
dijVklVkl

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

quadratic term

þHOT
ð4Þ

where HOT denotes higher order terms,

nt ¼
Cm

k 2

1
for HRN k-1 models

Cmf m
k 2

1
for LRN k-1 models

8<
: ð5Þ

and

Sij ¼
›ui
›xj

þ
›uj
›xi

; Vij ¼
›ui
›xj

2
›uj
›xi

ð6Þ

In the conventional linear formulation of the eddy viscosity models, Cm ¼ 0:09 and the
coefficients C1 to C3 are all zero. The non-linear strain-stress relation (NLSS) was
proposed by including the products of the strain-rate and vorticity tensors up to the
quadratic term or higher into the Reynolds stresses. Many forms of the quadratic term
have been proposed, and the Cm, C1 to C3 terms proposed by Shih et al. (1993) are
given as

Cm ¼
0:667

1:25 þ S þ 0:9V
ð7Þ

C1 ¼
3=4

ð1000 þ S 3ÞCm

; C2 ¼
15=4

ð1000 þ S 3ÞCm

; C3 ¼
19=4

ð1000 þ S 3ÞCm

ð8Þ

where

S ¼
k

1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
SijSij

r
; V ¼

k

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
VijVij

r
ð9Þ
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The damping function ( f m) in equation (5) will be defined in Section 2.2.2. The
turbulent heat fluxes are modeled using the Boussinesq approximation as

uj 0T 0 ¼ 2
nt

Prt

›T

›xj
ð10Þ

where Prt ¼ 0:9 is the turbulent Prandtl number used in wall-bounded flows.
2.2.1 High-Reynolds number k-1model with wall functions. The governing equations

for the HRN k-1 model are written as

›

›xj
ðujkÞ ¼

›

›xj

nt

sk

›k

›xj

� �
þ Pk 2 1 ð11Þ

›

›xj
ðuj1Þ ¼

›

›xj

nt

s1

›1

›xj

� �
þ

1

k
ðC11Pk 2 C121Þ ð12Þ

where sk ¼ 1:0, s1 ¼ 1:3, C11 ¼ 1:44 and C12 ¼ 1:92 are model constants
recommended by Launder and Spalding (1974). The turbulence production term (Pk)
in the k-equation is defined as

Pk ¼ 2ui 0uj0
›ui
›xj

ð13Þ

Wall functions, which are based on the logarithmic law of the wall, assume that the
near-wall region consists of two layers: the inner layer which extends from the wall up
to y þ ¼ 11.63, and the outer layer where yþ . 11:63: The dimensionless wall-normal
distance is given by yþ ¼ yut=n where ut ¼

ffiffiffiffiffiffiffiffiffiffi
tw=r

p
is the friction velocity and tw is

the wall shear stress. In the outer layer, the velocity and temperature profiles are given
by

uþ ¼
lnðEyþÞ

k
; T þ ¼ Prtðu

þ þ PeeÞ ð14Þ

where k ¼ 0:42 is the von Karman constant and E ¼ 9:8 is an integration constant for
smooth walls. The Pee term is a function that depends on the ratio of laminar to
turbulent Prandtl number. Jayatilleke (1969) proposed

Pee ¼ 9:24
Pr

Prt

� �0:75

21

" #
£ 1 þ 0:29 exp 20:007

Pr

Prt

� �� �
ð15Þ

where Pr ¼ 0:71 is the Prandtl number for air.
2.2.2 Low-Reynolds number k-1 model. Jones and Launder (1972) first proposed a

LRN k-1 model by introducing damping functions based on the local turbulent
Reynolds number (Ret ¼ k 2=n1). Many researchers have proposed numerous variants
of the LRN model, and the differences between various models are the values of model
constants and the formulae of damping functions. In the version of Lien and Leschziner
(1999), denoted by Model LL hereafter, the turbulence equations are written as
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›

›xj
ðujkÞ ¼

›

›xj
nþ

nt

sk

� �
›k

›xj

� �
þ Pk 2 1 ð16Þ

›

›xj
ðuj1Þ ¼

›

›xj
nþ

nt

s1

� �
›1

›xj

� �
þ

1

k
½C11 f 1ðPk þ P 0

kÞ2 C12f 21� þ Yap ð17Þ

where f 1 ¼ 1; f 2 ¼ 1 2 0:3 expð2Re2
t Þ and

Yap ¼ max 0:83
k 3=2

2:51y
2 1

� �
k 3=2

2:51y

� �2
1 2

k
; 0

" #
ð18Þ

The damping function ( fm) in equation (5), which is a function of dimensionless
wall-normal distance y* ¼ y

ffiffiffi
k

p
=n; is used to model the damping effect associated with

pressure-strain correlations in the vicinity of walls. The damping function is defined as

f m ¼ ½1 2 expð20:0198y* Þ� 1 þ
5:29

y*

� �
ð19Þ

The P 0
k term in the 1-equation is introduced to ensure that the correct level of near-wall

turbulence energy dissipation is returned, where

P 0
k ¼

C12

C11
Pk þ 2n

k

y 2

� �
expð20:00375y* 2Þ ð20Þ

3. Numerical details
3.1 Problem description
The geometry of the ribbed channel is shown in Figure 1, where the rib pitch to rib
height ratio is Pi=H ¼ 7:2 and the channel height-to-rib height ratio is D=H ¼ 5:
The measurements of Drain and Martin (1985) and Liou et al. (1993) were conducted at
a Reynolds number based on the bulk mean velocity and hydraulic diameter (twice the
channel height) of 37,200 for the flow fields and of 12,600 for the thermal field. In
the experiment of Liou et al. the channel top wall was insulated and the bottom wall
was heated by a constant heat flux (qb).

3.2 Periodic condition
The geometry shown in Figure 1 has a repeated pattern from pitch to pitch. At a
distance sufficiently downstream in the streamwise direction, the flow becomes fully
developed and periodic. Under these conditions, the calculation can be performed using
only one of those identical geometrical modules to save computational time. For the
present study the region between two dashed lines shown in Figure 1 is chosen as the
computational domain.

All solution variables in the periodic regime, except for the pressure and
temperature, are identical at the inlet and outlet of the module. The periodic
relationship can be written as
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fðxinlet; yÞ ¼ fðxinlet þ Pi; yÞ ð21Þ

where f ¼ u; v; k and 1.
Along the streamwise direction, the pressure drop and temperature increase across

each module are constant

cðxinlet þ Pi; yÞ2 cðxinlet; yÞ ¼ a constant ð22Þ

where c ¼ P or T. According to Patankar et al. (1977), the pressure and temperature
can be decomposed into

Pðx; yÞ ¼ ~Pðx; yÞ2 bx ð23Þ

Tðx; yÞ ¼ ~Tðx; yÞ þ gx ð24Þ

where the tilde sign represents the periodic part of the variable which satisfies equation
(21), and b and g are the pressure gradient and temperature gradient across one pitch,
respectively. Substitution of equations (23) and (24) into equations (2) and (3) yields the
following momentum and energy equations under the periodic condition

›

›xj
ðujuiÞ ¼ 2

1

r

› ~P

›xi
þ

›

›xj
n

›ui
›xj

þ
›uj
›xi

� �
2 ui 0uj0

� �
þ bdi1 ð25Þ

Figure 1.
Schematic of (a) the ribbed
channel geometry and
(b) the computational
domain
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›

›xj
uj ~T
� �

¼
›

›xj

n

Pr
þ

nt

Prt

� �
› ~T

›xj

� �
2 guidi1 ð26Þ

For a given Reynolds number, there is a corresponding pressure drop. The pressure
gradient b is unknown a priori and is guessed by an arbitrary constant during the first
iteration. After the solution converges, the corresponding bulk mean velocity at any x
location can be evaluated as

Ub ¼

Z
uðx; yÞ dyZ

dy

								
x

ð27Þ

Based on the Ub value, the pressure gradient b is adjusted accordingly (for example, if
Ub is lower than the experimental value, then b is increased), and the overall solution
procedure is repeated until the desired Reynolds number (Re ¼ UbDh=n in the present
study) is attained.

Patankar et al. (1977) also expressed the temperature gradient as

g ¼
Tðxinlet þ Pi; yÞ2 Tðxinlet; yÞ

Pi
ð28Þ

which can be further approximated as

g ¼
Tðxinlet þ PiÞ2 TðxinletÞ

Pi
ð29Þ

where

TðxÞ ¼

Z
Tðx; yÞuðx; yÞ dyZ

uðx; yÞ dy

								
x¼xinlet or xinletþPi

ð30Þ

For the case of a channel with an adiabatic top wall and an isoflux (qw) bottom wall, the
temperature gradient g can be obtained by applying a global energy balance to the
control volume, as shown in Figure 2. This gives rise to the following equation,

qwPi ¼ _mCp Tðxinlet þ PiÞ2 TðxinletÞ

 �

ð31Þ

Figure 2.
Control volume for the
global energy balance
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Combining equations (29) and (31) results in

g ¼
qw

_mCp
ð32Þ

3.3 Thermal boundary conditions
The temperature boundary condition at the heated wall can be written as

›T

›n

				
w

¼
›

›n
~Tþ gx

� �				
w

¼
› ~T

›n
þ g

›x

›n

� �				
w

¼ 2
qw

l
ð33Þ

where n is the surface normal, l is the thermal conductivity, and qw is the heat flux at
the wall.

The heat flux at the channel bottom wall is given by

qw ¼ qb ð34Þ

and the mass flux is calculated as

_m ¼ rDUb ð35Þ

where D ¼ 5H and

Ub ¼

Z D

0

u dy

�Z D

0

dy

is the bulk mean velocity.
The temperature gradient g is obtained by substituting equations (34) and (35) into

equation (32):

g ¼
1

5

qb

rCpUbH
ð36Þ

At the channel bottom wall, the boundary condition based on equations (33) and (34) is
obtained as

›T

›n

				
w

¼
› ~T

›y

				
w

¼ 2
qb

l
ð37Þ

3.3.1 Prescribed heat flux approach. Two treatments of thermal boundary conditions
on a rib’s surfaces are considered. The first one is to impose a constant heat flux
qw ¼ qb=3 on the rib faces. This treatment is based on the assumption that heat
flux entering into the rib base from the channel wall is equally distributed to the other
three faces of the rib. In this approach, the boundary conditions at the rib faces are
specified as
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›T

›n

				
w

¼

› ~T
›y

			
w
¼ 2 1

3
qb

l
at the rib top face

› ~T
›x

			
w
þg ¼ 2 1

3
qb

l
at the rib left and right faces

8>><
>>: ð38Þ

3.3.2 Conjugate heat transfer approach. The second approach is to couple conduction
and convection heat transfer between the rib and the fluid. This approach is
computationally costly, but it ensures physical correctness. In the conjugate heat
transfer problem, conduction in the solid region is coupled with convection in the
adjacent fluid region. One approach to solve this problem is by solving conduction in
the solid and convection in the fluid separately, followed by an iterative procedure that
matches the temperature and heat flux at the solid-fluid interface.

Another way to solve this problem is to use a harmonic mean of thermal
conductivity practice proposed by Patankar (1978). In this approach, the temperature
equation is solved in the entire computational domain containing both the solid and
fluid regions. The temperature is governed by

›

›xj
ðrCpujTÞ ¼

›

›xj
leff

›T

›xj

� �
ð39Þ

where leff is the effective thermal conductivity specified as:

leff ¼

lf 2 rCpu0T
0 in the liquid region

ls in the solid region

lint at the solid-fluid interface

8>><
>>: ð40Þ

and the subscripts s and f denote solid and fluid, respectively. In equation (39), only the
values of fluid density and specific heat at constant pressure are employed. The values
of solid density and specific heat are not used because velocities in the solid region are
zero. As a result, equation (39) is solved as a pure conduction equation in the solid
region.

The heat flux across the solid-fluid interface can be represented by the harmonic
mean of the conductivities of the two adjacent control volumes. Consider two control
volumes separated by the solid-fluid interface, shown in Figure 3, where the left control

Figure 3.
Control volumes adjacent

to the solid-liquid interface
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volume is in the solid region and the right control volume is in the fluid region. To
ensure energy conservation at the interface, the heat flux leaving the solid (denoted
by qs) must equal the heat flux entering the fluid (denoted by qf). Based on a
piecewise-linear temperature profile, the heat fluxes are defined as

qs ¼ 2ls
›T

›x

				
s

¼ 2ls
T i 2 TW

Dxs=2
ð41Þ

qf ¼ 2lf
›T

›x

				
f

¼ 2lf
TP 2 T i

Dxf=2
ð42Þ

The temperature at the interface is denoted by Ti, which can be evaluated by equating
equations (41) and (42). This yields

T i ¼
Dxs

Dxs þ l0Dxf
TP þ

l0Dxf

Dxs þ l0Dxf
TW ð43Þ

where l0 ¼ ls=lf is the thermal conductivity ratio of solid to fluid.
Substituting equation (43) into equation (42) gives an expression for the heat flux at

the interface:

qf ¼ 2lint
›T

›x

				
int

ð44Þ

where

lint ¼
l0lfðDxs þ DxfÞ

Dxs þ l0Dxf
ð45Þ

›T

›x

				
int

¼
TP 2 TW

xP 2 xW
ð46Þ

An expression for lint at the other rib faces can be derived in a similar manner.
At the rib base where qw ¼ qb; the boundary condition is

›T

›n

				
w

¼
› ~T

›y

				
w

¼ 2
qb

ls
¼ 2

1

l0
qb

lf
ð47Þ

The channel bottom wall was made of aluminum in the experiment of Liou et al. but no
information about the material of ribs was provided. Three different values of
conductivity ratio, l0¼6,600, 660 and 66, are considered in the present study, where
l0 ¼ 6,600 is the conductivity ratio of aluminum alloy 6061-T6 to air.

3.4 Numerical framework
The numerical solutions are obtained with the general non-orthogonal fully collocated
finite-volume algorithm “STREAM” of Lien et al. (1996). It employs the SIMPLE
pressure correction of Patankar and Spalding (1972) and Rhie and Chow interpolation
(1983) to avoid pressure oscillations. The “QUICK” scheme of Leonard (1979) is used in
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the momentum and energy equations, and the upwind difference scheme (UDS) is
employed in the k- and 1-equations.

4. Results and discussion
Table I lists four different models used in the present study, where Model LL with Yap
serves as the base model. Computed results of mean velocity (u) and turbulence
intensity (u0rms ¼

ffiffiffiffiffiffiffiffi
u0u0

p
) at Re ¼ 37; 200 obtained with various models are compared

to the experimental data of Drain and Martin at four channel locations of x=H ¼
0:1; 0:5;23:02 and 21.88.

For the heat transfer computations, the energy equation is solved separately from
momentum equations. The flow field is calculated at Re ¼ 12; 600 first, and then the
thermal field is computed by solving the energy equation using the converged
velocities. Heat transfer predictions are expressed in terms of the local Nusselt number,
which is defined in Liou et al.’s experiment as

Nu ¼
qwDh

lðTw 2 TbÞ
ð48Þ

where

Tb ¼

Z 5H

0

Tjujy dy

�Z 5H

0

jujy dy

is the local bulk mean temperature. Note that Tb used in computing the Nu along the
rib left and right faces is based on the value of Tb at x=H ¼ 0 and x=H ¼ 1;
respectively.

The heat transfer results are expressed in terms of the Nusselt number ratio,
Nu=Nus, where Nus ¼ 0:023Re0:8Pr0:4 is the Nu for a turbulent flow in a smooth
circular pipe from the Dittus-Boelter correlation. The abscissa in Figures 5 and 9,
denoted by “s”, is defined along the rib faces and channel bottom wall, where s ¼ 0
corresponds to the upper-left corner of the rib. Figure 4 illustrates the s-coordinate
system along the surfaces.

Models employed
Compared with the base model to investigate
the effect of

Model LL þ Yap (base model) –
Model LL Yap correction
Model LL þ Yap þ NLSS Non-linear stress-strain relation
HRN k 2 1 model þ Yap LRN model vs 0 HRN model

Table I.
Models used in the
channel flow study

Figure 4.
Coordinate system along

the solid surfaces
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The average Nu
�
defined here as Nu ¼

R 9:2
0 Nu·ds=9:2

�
is an important parameter

from engineering design point of view. Nu=Nus values from the experiment and from
the various models are summarized in Table II. The Nu will be discussed in Section 4.5.

4.1 Effects of grid refinement
To determine the accuracy of numerical solutions, two grids of 80 £ 60 and 120 £ 90
nodes are used. For LRN models, computational meshes are preferentially stretched
towards the solid surfaces. For HRN models, however, only uniform grids are used.
Very minor differences (less than 0.5 percent) are observed in the profiles of velocity
and turbulence intensity at Re ¼ 37; 200; and average Nusselt number at Re ¼ 12; 600
for Model LL, and only the results obtained from the grid of 120 £ 90 nodes are shown
in the later sections unless stated otherwise. In contrast, grid refinement affects
significantly the heat transfer results of the HRN k-1 model. This is because
grid-spacings adjacent to walls change as the mesh is refined. Since wall functions are
implemented at nodes of different heights for two different meshes and also, massive
flow separation occurs in the present flow, suggesting that the y þ values of the first
nodes adjacent to walls are very low in the near-wall regions (typically less than
10 instead of in the range of 60-150 where local equilibrium condition can be assumed),
it is not surprising to see that the sensitivity of numerical solutions to the change of
grid density is higher than in the LRN k-1 model counterpart. In practice,
grid-independent solutions for HRN models are very difficult, if not impossible, to
achieve in the present case because logarithmic layer does not exist in the canyon
between two consecutive ribs. Nevertheless, with the two grids examined here, the
differences in terms of velocity and turbulence quantities are less than 0.5 percent, and
in terms of Nu is about 2.7 percent. For all results obtained with the HRN k-1 model to
be shown later, the Yap term is included and calculations were performed on a mesh of
120 £ 90 nodes.

4.2 Effects of thermal boundary conditions
The predicted Nu distributions obtained from Model LL with Yap using the prescribed
heat flux approach (Section 3.3.1) and the conjugate heat transfer approach
(Section 3.3.2) are shown in Figure 5. The results obtained with both approaches are
almost identical along a large part of the ribbed wall (from s ¼ 2 to 8:2) in the
channel, with the main differences occurring at the rib faces and in the vicinity of
the lower corners of the rib.

Nu/Nus

Experiment 2.04

Prescribed heat flux approach Model LLþYap 1.36
Model LL 2.44
Model LL þ Yap þ NLSS 1.56
HRN k-1 model þ Yap 1.89

Conjugate heat flux approach Model LL þ Yap (l 0 ¼ 6,600) 1.46
Model LL þ Yap (l 0 ¼ 660) 1.44
Model LL þ Yap (l 0 ¼ 66) 1.42

Table II.
Average Nusselt number
results for the ribbed
channel
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It is observed that the prescribed heat flux approach predicts lower Nu than the
experimental data at the rib faces. However, the results are quite satisfactory
considering the simplicity of specifying qb=3 at each face of the rib in contact with
fluid. The results obtained with the conjugate heat transfer approach show very good
agreement at the rib top face (from s ¼ 0 to 1) and left face (from s ¼ 8:2 to 9:2).
However, negative Nu distributions are observed at the rib right face (from s ¼ 1 to 2)
and at the lower corner of the rib left face at around s ¼ 8:2: This is because two small
recirculation bubbles are observed around the lower corners of the rib shown in
Figure 6, where heat is trapped in the stagnant fluid. Consequently, heat is transferred
from the fluid to the rib, yielding negative Nu.

The effect of the solid-to-fluid thermal conductivity ratio on the Nu distributions for
l0 being of the order of 100 or higher is negligibly small using the conjugate heat

Figure 5.
Local Nusselt number

distributions obtained by
Model LL with Yap at

Re ¼ 12,600

Figure 6.
Streamlines computed

with Model LL þ Yap at
Re ¼ 37,200
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transfer approach (not shown). Young and Vafai (1998a, b) also reported that the Nu
distributions become nearly identical when l0 $ 100; which is consistent with the
present observation.

In the following discussion, all the heat transfer results were obtained using the
prescribed heat flux approach unless stated otherwise.

4.3 Effects of Yap correction
Two variants of Model LL, namely Model LL with and without Yap, are compared in
Figure 7. It is seen from this figure that at 4 # y=H # 5 Model LL with Yap is in good
agreement with the experimental data, while Model LL without Yap slightly
over-predicts the velocity profiles. At the locations of x=H ¼ 0:1 and 0:5; however,

Figure 7.
Profiles of mean velocity
at four channel locations
at Re ¼ 37,200
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both models considerably under-predict the velocity in the region above the rib for
1 # y=H # 2: Many researchers (e.g. Bredberg and Davidson, 1999; Manceau et al.,
2000; Tsai et al., 2000) also found the same discrepancy, suggesting that the experiment
might exhibit some three-dimensional effects.

A reversed flow is observed at the lower part of the channel at x=H ¼ 23:02; and
the addition of the Yap correction does improve the velocity prediction by enlarging
the separation bubble there. Figure 6 shown earlier indicated that two recirculation
bubbles are merged together between x=H ¼ 21 and 2 2; and no reattachment
occurs within this region. This is consistent with a very weak reversed flow observed
in the velocity profile at x=H ¼ 21:88 in Figure 7.

The difference between the predicted streamwise turbulence intensities from both
models and the experimental data, shown in Figure 8, is large. However, this is
expected from any eddy-viscosity models using the linear (Boussinesq) stress-strain
relationship. The discrepancies are most significant at x=H ¼ 23:02 and 2 1:88;
and Model LL without Yap, in general, agrees slightly better with the experimental
data because it tends to over-predict the turbulence energy.

Since LRN k-1 models without Yap tend to over-predict the turbulence length scale
and, hence, the heat transfer rate at walls, it is seen from Figure 9 that Model LL
without Yap significantly over-predicts the Nu distribution from s ¼ 2 to 8:2:
The inclusion of Yap in Model LL reduces the amount of turbulent energy in the
near-wall region and, as a result, the heat transfer prediction is improved.

The Yap correction is originally designed as a correction term for the LRN k-1
models only. However, in the present case the y þ values close to the bottom wall are
low due to the presence of massive flow separation within the canyon of two
consecutive ribs. Wall functions, described in equation (14) based on the logarithmic
law of the wall, are, strictly speaking, not applicable to this region. Preliminary
calculations show that the Nu returned by the standard HRN k-1 model (i.e. without
including the Yap term) was too high. This deficiency was improved later when the
same Yap term used in the LRN calculations was also included in the HRN model.
This suggests that, if the flow is far from the local equilibrium condition (e.g. in
recirculation zones), the Yap term can be introduced to LRN as well as HRN models
with a drastic improvement in the heat transfer predictions. In Figures 7-10, only
results obtained with the HRN k-1 model with the Yap term are shown here.

4.4 Effects of non-linear stress-strain relation
As shown in Figure 7, the base model (Model LL with Yap) with NLSS correctly
predicts the velocity profile in the region 0 # y=H # 2 at x=H ¼ 23:02: However, it
produces a slightly larger recirculation bubble in the wake region of the upstream rib
at x=H ¼ 21:88: This is because the shear-strain rate bordering the separation lines is
generally large. Along these lines, the strain-rate and vorticity invariants (S and V) are
also high, giving rise to low eddy viscosity as both S and V appear in the denominator
of equation (7). Lower viscosity yields lower shear stress along the curved shear layer,
which, in turn, reduces the amount of fluid entrained into the recirculation zone. As a
result, the reversed flow is over-predicted.

In addition, the turbulence generation Pk, defined in equation (13), is also reduced
because the Reynolds stresses ui 0uj0 based on Pope’s constitutive equation in equation
(14) are functions of eddy viscosity nt. This is consistent with our observations in

Conjugate
turbulent forced

convection

477



Figure 8 that the inclusion of the NLSS under-predicts further the turbulence intensity
u0rms. Even though the base model with NLSS predicts lower values of urms

0 at x=H ¼
23:02 and 2 1:88 shown in Figure 8, it presents the trend better in the region from
y=H ¼ 0 to 1:5: It captures the correct location of the u0rms peak at y=H < 1: Model LL
with NLSS also predicts better Nu distribution from s ¼ 4 to 8 as seen in Figure 9.

4.5 Average Nusselt number
It is evident from Table II that, without the Yap term, the Nu predicted by Model LL in
conjunction with the prescribed heat flux approach, is over-predicted by about
20 percent compared to the experimental value. This is consistent with the earlier

Figure 8.
Profiles of turbulence
intensity at four channel
locations at Re ¼ 37,200
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statement that the Yap term is designed to remedy the problem of excessive turbulent
length scales near walls associated with most LRN eddy-viscosity models.
An overestimation of turbulence length scales gives an under-prediction of 1, which,
in turn, over-predicts the turbulence energy. As a result, the near-wall heat transfer rate
is enhanced. With the Yap term, however, the trend is opposite: the Nu is
under-predicted by about 33 percent, which is consistent with the local Nu
distributions shown in Figures 5 and 9.

Figure 10.
Average Nusselt number

at various Reynolds
numbers

Figure 9.
Local Nusselt number

distributions at
Re ¼ 12,600
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The inclusion of non-linear stress-strain relation slightly improves the heat transfer
rate, but still the Nu is under-predicted by 24 percent. When the conjugate heat transfer
approach is adopted, the predicted Nu is in a better agreement with the experimental
value compared to the prescribed heat flux approach (1.46 for the conjugate heat
transfer approach and 1.36 for the prescribed heat transfer approach). However, even
with the former approach, the Nu is still 28 percent lower than the experimental data.

The Nu predicted by the HRN k-1 model with the Yap term is only 7 percent lower
than the experimental data. However, Figure 9 shows that the HRN model
under-predicts the Nu distribution along the rib faces and over-predicts the Nu
distribution along the channel bottom wall. This suggests that even if the Nu may be
well predicted, it does not necessarily mean that the local Nu distribution is entirely
correct.

Since the HRN k-1 model with the Yap term predicts the closest Nu to the
experimental result, simulations were performed using this model for a range of
Reynolds numbers ranging from 12,600 to 37,200 to obtain the correlation

Nu=Nus ¼ 0:0015 Re0:7553 ð49Þ

Figure 10 shows that the heat transfer is enhanced as the Reynolds number increases.
This is reasonable since more energy is transferred from the mean flow to turbulence,
which augments the heat transfer rate.

5. Conclusions
In the present study, both the high-Reynolds number and low-Reynolds number forms
of the k-1 turbulence model, combined with a length-scale correction term in the
1-equation – the Yap term – were adopted to predict the heat transfer rate for a
fully-developed flow in a ribbed channel heated at the bottom wall, in which massive
flow separation occurs. In addition to the conventional linear stress-strain relation, a
non-linear stress-strain relation truncated at the quadratic level with an eddy viscosity
sensitized to the strain-rate and vorticity invariants (S and V) was also employed to
investigate the effect of turbulence anisotropy on the predictions of mean-flow,
turbulence quantities and local heat transfer rate. Thermal boundary conditions at
fluid-solid interfaces were handled by the use of the prescribed heat flux approach and
the conjugate heat transfer approach. The results of this investigation allow the
following conclusions to be drawn

(1) For a massively separated flow, the inclusion of the Yap term in both the HRN
and LRN models returns reasonably good predictions of the mean-velocity
within the separation regions. Without the Yap term, however, the sizes of
recirculation zones ahead and behind the rib are significantly under-predicted
(not shown).

(2) The boundary-layer thickness on the rooftop of the rib is under-predicted by all
turbulence models examined here, which is consistent with other earlier
investigations using different turbulence models. This might be an indication of
three-dimensionality in the experiment, which cannot be captured by the
present two-dimensional calculations.

(3) The employment of non-linear stress-strain relation allows turbulence
anisotropy to be predicted (only u0rms is shown here). However, the level of
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u0rms is too low, which might be due to the adoption of Cm in equation (7), which
is a function of S and V instead of a constant 0.09, suppressing the
turbulence-energy generation term Pk and, hence, u0rms.

(4) The treatment of thermal boundary conditions using the conjugate heat transfer
approach allows the correct heat flux at solid-fluid interfaces to be modeled. It is
found that, if the thermal conductivity ratio of solid to fluid l0 is of the order of
100 or higher, its effect on the predicted Nu distribution is insignificant.
Although this approach is computationally intensive, it does give better
prediction in terms of Nu than the simple prescribed heat flux approach.
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